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ABSTRACT

Polyhedrality is established for convex hulls of sets
defined by systems of equations in non-negative integer vari-
ables. This property is useful for certain existence, duality,
and sensitivity results in integer programming. The structural
theorems obtained also shed some light on the relationship be-
tween the convex hull and the relaxation obtained by deleting

integrality constraints : T e ”j
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ON THE POLYHEDRALITY OF THE CONVEX HULL
OF THE FEASIBLE SET OF AN INTEGER PROGRAM

R. R. Meyer and M. L. WageT

1. Introduction

A number of results dealing with existence [9] duality [1], and sensi-
tivity analysis for integer programming have been established for integer
programs whose feasible sets have convex hulls that are polyhedral
(i. e., the intersection of a finite number of closed half-spaces). This
is because, given a set S C R" and a linear function cx, 1if the convex
hull of S (denoted conv S) is polyhedral, then the problem supcx s.t.

X ¢ S has the same optimal value as the linear program max cx s.t.

X ¢ conv S (including the infeasible case in which the optimal value is
set to -o, and the unbounded case in which the optimal value is taken

as +©), and, moreover, every optimal extreme point of the linear program

is an optimal solution of the problem over S . In this report, polyhedrality

is established for the convex hull of an arbitrary set S of the form

%k
(M S = {x|Ax=b, x>0, x integer )}

where X = (xl, e iy xn)T € Rn ’

* A vector or matrix is termed integer or rational if all its elements are
respectively integer or rational.

t Mathematics Department, University of Wisconsin-Madison and
Institute for Medicine and Mathematics, Ohio University, Athens,
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A is agiven m Xn matrix of real numbers, and b is a given element of
Rm . While it might be thought that the polyhedrality of the convex hull
of the feasible set of an integer program could be taken for granted, it has
been shown that in the inequality constrained case, the convex hull may
be quite complex [4], [5], [13] and, in fact, need not be polyhedral [3].

In the case of rational coefficients (for both inequalities and equations),

polyhedrality was previously proved in [9]. Here we will show that this

rationality hypothesis is not required in the equality-constrained case.

2. A Rational Representation

In this section it will be shown that the set S defined by (1) always
has an equivalent representation as {x|A'x = b, x>0, x integer},
where A' and b' are rational. Once this resuit is established, poly-
hedrality of conv S can be demonstrated via Theorem 3.9 of [9]. (However,
a more compact and geometrically-motivated proof is possible due to
absence of the continuous variables allowed in [9], and this alternative
method of proof is given in Section 3.)

Theorem 1 employs the concept of rational independence: a set of

real numbers {yl, Ik yk} is said to be rationally independent if

YN *ose ¥ Y i = 0, where Tppeses r, are rational, implies By ®aue ®
Iy = 0 . Rational independence of a set of n-vectors is similarly defined.
(It is easily seen that rational independence and integral independence,

i.e., independence with respect to integer weights, are equivalent, but

due to the mechanics of the proofs to follow, rational independence is more
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convenient to work with. Note that while linear independence clearly

implies rational independence, the converse is not true.)

Theorem 1; Let sez {xIAx = b, x integer} . Then there exists an m'Xn
matrix A' of rationals and a vector b' of rationals such that Se= {A'x=Db*,

x integer} .

Proof: If S_ = @, then we maytake m'=1, A=0, b=1 and achieve
the required rational representation, so we may assume Se +d. We will
first consider the case in which the system Ax = b consists of a single

equation, since a similar analysis performed equation-by-equation will

yield the desired result in the general case. Denote the single equation

by

(2) alxl+azx2+... +anxn=p

If all @ = 0, then feasibility implies p = 0, so no transformation is

needed. Thus, we may assume that not all a, are 0, and, for notational

i

convenience, we also assume that the variables have been ordered so that

al # 0 (in dealing with a system of equations, a different ordering might

be required for each equation, but this causes no problems). If n=1

%

%
then B = o, X, for some integer xl i

i
dividing through by «

and the data may be rationalized by
l .

If n>1, we replace coefficients by rational combinations of
"previous", "independent" coefficients whenever possible. Thus, if

a where r is rational, we re-write (2) in the form

i 5 9 1,2
o3

SRR T ibelube s s o




(3) ' al(xl+r XJ+...%a.Xx =p

| P nn

Continuing this procedure, we end up with an index set I C {Le..,n}

such that (2) is equivalent to

(4) Z‘,(aZr JX) =8
iel j=1
where the ri,j l‘f:re rational, and the a; for i € I are rationally independent.
* * *
Since S # d, Z a,x, =p for some integers x,,...,X and by carry-
e 1 i 1 n’

ing out the same conversion as above we have
(5) ?(aZ”,)a.
By subtracting (5) from (4) we have

(6) Z(a Z 1j(x xj))-o
We will now show that

n
E 3
(7) {x|; Z i % for ie I, x integer} .

Clearly, if x is integer and satisfies the equations of (7), then x e Se >

n
%
so suppose that x ¢ S_, but that 121 %t Z g% for at least

one 1.

From (6) it would follow that the o, with ie I were not rationally

i
independent, which is a contradiction of the way in which they were con-
structed. Thus in the single equation case, the set Se has an equivalent

representation of the form (7).
-4
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When Ax = b consists of more than one equation, an analogous
procedure may be performed for each equation in the system, so that Se
may be represented in terms of the collection of the corresponding systems
of the form (7). Alternatively, we may express A and b in terms of a
"basis" of rationally independent columns of A, and carry out a proof

analogous to that of the scalar case. ]

5 1 4 ™
Example 1: Let Se={x|-l X -3 2x2+3 Xy mge 2, x integer} .

-1 and -!2- J2 are rationally independent, but 4/3 = -1- -4/3 - IE NZ -0,

so the equation in Se may be written as -1 - (x, - 2 x3) - -;— N2 - (x

I3 )

2

-N2 . since setting x =1, x,
we may write 5/3 N2 =-1- (1) -%\/7 « (2) +% + (2) . Substituting
2x
37
oy L BT R
E\/?. (xz)_-l-(l)-lez @) +3 - (2)=-1 (-3)-2»42 (2) .

w o

= 2, x3 = 2 vyields a point in Se s

for the original RHS, the equation in Se is written as -1- (x ) -

From the preceding theorem we conclude that Se may be written as

{xlxl -% Xy = -%, X, = 2, x integer}.

1
Example 2: X + x, +3 X,
-x1+x2+x3-3x4=-2

x1 integer (1=1,...,4) .

Using the equation-by-equation approach, we find that only the first
equation needs to be "rationalized", and it yields the two equations

X + -Z— and x2 = 2, so that the original system is equivalent to

] e

N
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x, Integer (i=1,...,4)

On the other hand, considering the rational independence of the columns,
we find that the first three columns of A are rationally independent,
whereas the fourth column can be expressed as a rational combination
(with weights 1 and -2) of columns 1 and 3. Thus, the original system

may also be shown to be equivalent to:

xl+x4 = 3
x2 =2
x3-2x4=-1
X, integer (1=1,...,4). .

Note that if there exists a number y such that all of the quotients
al/Y’ ! ,an/y, B/y are rational, then (assuming @ # 0) (aj/Y)/(al/Y) =
aj/al is rational for j = 2,...,n, so the conversion procedure in
Theorem 1 ylelds I= {1}, and, in fact, that procedure is simply equivalent
to dividing through by y. (In fact, if there exists a y such that the

quotients al/y, Fovg an/y are all rational, then there exists a y' such

-6-




that al/y', Hehi: ,an/y' are all integer, and in this case integrality of
B/y' is clearly a necessary condition for the existence of an integer

solution. "nder this divisibility assumption, a necessary and sufficient

condition for the existence of an integer solution is that the "generalized
greatest common divisor" (see [10}) of @pyeeey @ "divide” B in the sense
of giving an integer quotient.) However, as the preceding numerical ex-
ample shows, the coefficients need not have this divisibility property,
and in such acase I # {1} and a single equation will be converted into
an equivalent system of equations.

Corollary 1 below gives two additional results easily obtained from

Theorem | and an analysis of its proof.

Corollary 1; If Se = {x[Ax = b, x integer} and S: = {x[Ax = b,

o

x rational}, then there exist integer A and b such that Se= {x|7\x= %

R ~
x integer} and S, = {x|Ax = b, x rational} .

Proof: Using Theorem 1, S, may be written as {x|A'x = b', x integer} i
where A' and b' are rational, and by multiplying each equation of

A'x = b' by a suitable integer, conversion to integer data is achieved.
Inspection of the proof of Theorem 1 shows that all of the steps go through

if the xi are assumed rational rather than integer. ®

An alternative approach to the derivation of the results of this
section is to consider the set S:, and, by using the fact that a linear
trans formation between two vector spaces over a field (in this case, the

rationals) has a representation in terms of a matrix whose elements come

Mg
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from the field, show that Sz has a rational representation. Theorem 1
then follows by taking the intersection of Sz with the integer vectors
in an.

In Section 3 the rational representation of S is used to prove poly-
hedrality of conv S, however, it might also be noted that other useful

structural properties (see [ 6]) can also be derived from the rational

representation.

3. Structural Properties

In establishing the polyhedrality of conv S, we may assume by

Theorem 1 that S is represented in the form
(8) S = {x|A'x = b, x >0, xinteger} ,

where A' and b' are rational.

In order to state structural properties of conv S in a compact form,

we introduce the following definitions:

E = {x|x is an extreme point of S }

K' = {x|A'x =0, x>0}

{x|x ¢ K', x rational}

Ky, = {x|x ¢ K', x integer}
Z2"= {x]x e Rn, x integer} .
The following Lemma 1 leads immediately to the finiteness of E.

For completeness, a proof of Lemma 1 is given, although an equivalent




result stated in a slightly different manner is given as Lemma 4.1
of [7], where it is used as the basis for a proof of the "Kanig Infinity

Lemma' [8].

Lemma | (Dominance Lemma):

Let {p(l), p(z), ... } be an infinite sequence of distinct, non-

negative points of Z" . Then there exist distinct indices i,j such that

(1)

e p(j) (componentwise).

Proof. We first show that there exist index sets J' and J" (with

J' UJ* = {l,...,n}) and an increasing subsequence I'n of the integers
such that the sequences {pik)} are constant for i e J' and have certain

useful properties for ie J'" . Consider the sequence {pgk)}, and, if for

(k)
|

each N there exists a k(N) such that k > k(N) implies >N, set

I, =1{1,2,3,...} and put 1 in the index set J" . Otherwise, for some

N, there exists an increasing subsequence of integers I1 such that ke L

implies p:k)

:k) B ;1’ a constant, for all ke Ij; put 1 inthe index set J'.

Now carry out the analogous procedure for the sequence {p;k) |k € Ii} 5

< N, and thus there exists a subsequence Ij of Il such

that p

thereby obtaining a subsequence I'2 of Ii and assigning 2 to J' or J".

In general, given the index set Ii we similarly construct I'

141 and place

i+l in J' or J" (1=1,...,n-1) . Note that those indices ie ]J' have

the property stated above, and those indices 1 e J" have the property that, |

(k)

for every N, there exists a k(N) such that k > k(N) implies Py

>N.
Choosing an arbitrary 1ie 1;1 , it is clear that by choosing a sufficiently
' (1) (J)
large j e In, the inequality p " <p will hold. (]
-9-
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Lemma 2: |E| is finite.

Proof; If the result were false, by the Dominance Lemma, there would be
two extreme points x' and x" satisfying x' < x" with x'# x" . How-
ever, X'+ 2(x" - x') is easily seen to be in S, and the equation

1 1

X"=zX +3 [x' + 2(x" -x')] contradicts the hypothesis that x" was an

extreme point of S. [ ]

(Lemma 2 was proved in [9], but the above proof is more compact

and offers more geometric insight.)

Theorem 2: S = (conv E + Kk) nzl.

Proof: In Theorem 3.6 of [9], it was shown that every point of S is con-

tained in conv E + K;2 . Conversely, by verifying that the constraints are
satisfied, it is easily seen that every integer point of conv E + Kk is in

S. "

Lemma 3: K' = conv Kh = conv l(i 3

Proof: Since K' is convex and K' -, Kh 2 K}, K' D conv Kh D conv Ki ;

The proof will be completed by showing that conv K'I 2K' . Since K' is

where the p, are non-

r
- B 5 J
may be taken as the extreme points of

W
a polyhedral cone, if xe¢ K', then x = Z "
j=0
negative weights and the rj
n
K'nN {xl Z x1 < 1} . (We assume ro =0.) Since A' is rational, however,
i=l

these extreme points are easily seen to be rational. Let N be any positive

-10-
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w
integer such that (1) Nr, is integer for all j and (2) N > Z uj so that

J =0
=0,

X = Z;j F;, where }Ij =pj/N and T, = Nr, . Since r, we may
()

i i 0

write X = [ﬁo + (1 - Z Fj)];;) s i :j -r_j, so that x has been expressed

j=0 1
as a convex combination of € K‘I . &

Theorem 3: conv S =convE+K'.

Proof: From Theorem 2 it follows that S € conv E + Kh CconvE+K.
Since conv E + K' is convex, conv SCconvE + K'. To get the opposite
inequality, note that by Lemma 3 conv E + K' = conv E + conv K‘I, so that

conv E + K' = conv (E + K'I) Cconv S, since (E + K'I) cS. ®

Since the sets conv E and K' are polyhedral, Theorem 3 establishes

the polyhedrality of conv S.

Theorem 3 also allows an interesting comparison to be made between

conv S and the linear programming relaxation T' of S defined by

T' = {x|A'x =b’, x>0}. Since T' is polyhedral and line-free, we have
(see[ ]) T =convE'+K', where E' is the set of extreme points of T'.
Comparing this with Theorem 2, we note that, roughly speaking, conv §
and T' “"coincide" in their asymptotic parts and "differ" only in their ex-
treme points. (From a computational point of view, however, this differ-
ence is crucial, since the extreme points of T' have a nice algebraic
characterization (as basic feasible solutions) and have a cardinality that
is bounded from above by (:1,), whereas these properties do not carry

over to the extreme points of S .) This property is not the case, however,

-ll-
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for the linear programming relaxation T defined in terms of the original

constraints by T = {xle =b, x> 0}, as may be seen by considering the
following example: if the constraints Ax = b are given by x1 -NZ xz =

1-N2, then T consists of the ray {xlxl-\/-z_x ol X 20, x, >0},

2 1

whereas T' = {xlxl =1, x, = 1} = {(1,1)} . Of course if A is rational,

then T and T' coincide, but without hypotheses on A, it is only possible

2

to conclude that TDOT' and that K= {x|Ax = 0, x> 0} DK' (that
A'x = b' implies Ax = b and that A'x = 0 implies Ax = 0 are easily seen
from (7)). These results are summarized in the following theorem, where

%k
E denotes the set of extreme points of T .

*
Theorem 4: conv S = conv E + K'Cconv E' +K' = T'STz convE +K

and K' CK .
Proof; Since S CT' and T' is convex, conv SCT'. The otherre-
lations have been previously discussed. ]

Note also that Theorem 4 implies that if T is a bounded set, then
K'=K= {0} and conv E C conv E'C conv E* . However, if T and T
are unbounded, then no ordering relations need hold between E, E', or £

—)

(or between their convex hulls), as may be seen by considering Example 1,

5

’ Z’Z)}’ and

in which the corresponding sets are E = {(1,2,2)}, E'= {(0
%k —
E = {(0,0,0)}, where 0= (-2- - JZ)/(%) ‘
Polyhedrality of conv S may also be demonstrated directly without

resorting to the rational representation of Theorem 1. Defining

KR = {xle = 0, x rational }, we may prove along the lines of the proof of

]2
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Theorem 3 that conv S = conv E + conv KR, so that polyhedrality of
conv S will follow from the polyhedrality of conv KR . Polyhedrality of
conv KR is established by considering span KR’ i.e. the set of all

linear combinations of elements of K and using the following lemma;

R)
Lemma 4;: If x e span KR n R:, then there is a rational X e span KR n Rr:

with §1=o if and only if x, =0 (i=1,...,n).

Proof: First note that since span KR is the span of rational vectors, any
maximal independent subset of KR forms a rational basis for span KR 3
Fix such a maximal independent set and let B be the matrix whose ith
column is the 1th vector in this independent set. Then
span KR = {Ba I a e IRK} %
Fix x € span KR n ]Rr_:. Then there exists an a such that Ba = x.
Let B be the matrix consisting of those rows, bi’ of B for which

X, = 0. Since B is rational, the null space of B has a basis consist-
ing of the columns of a rational matrix C. Hence a = Cy for some \y.
Perturb vy slightly to get a rational y'. Then a' = Cy' is rational,

Ba' = 0, and with a small enough perturbation o' is sufficiently close

to a so that Ba' has positive components where Ba has positive

components. Let x = Ba'. »

"

Theorem 5; conv K span KR n Rz

R

Proof: Since span KR n Rr: is convex, it suffices to show that conv KR

D span KR n R: . Fix x e span KR n R: . We simply drive each co-

A A M A SRR L K e e
Sy Rl
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ordinate of x to zero by subtracting appropriate multiples of rationals in
ng".
span KR IR+

Specifically, using Lemma 4, choose a rational r, € span KR n IRT

1

that has the same zero coordinates as x . Then there exists a number,

Yy such that x - Y\ is non-negative and has more zero coordinates

than x . Continue choosing r's and y's so that at each step, §,

X - f A is non-negative and has more zero coordinates than
i<j

o y,f; - This process must stop at some j < n with x- ¥. v =0,
i<j-1 i<i,

f.e. X= z\ Yiri’ where the weights Y are non-negative. By adjusting
i<j

the weightsoand r, as in the proof of Lemma 3, it may be shown that

i
X € conv KR . [ ]

In closing, it should be re-{terated that in the inequality constrained
case, if we define SI = {x|Ax <b, x>0, xinteger}, it need not be the

case that conv SI is polyhedral. This may be seen from the following

problem considered in [9]):

maximize -avx1 + X

2
s. t. -clrx1 + x2 <0
(9) e
xz >0

xl, x2 integer .

It was shown that the problem (9) does not have an optimal solution if o
is any positive rational, even though it is feasible and not unbounded.

This phenomenon could not occur if the convex hull of the feasible set were




polyhedral, since that property would guarantee the existence of an opti-
mal solution. (In this particular example, it may be shown that the cor-
responding SI actually has an infinite number of extreme points (see [3]
for related work). Moreover, by replacing a by rationals suitably close

to @, and by replacing the variable x, by x' = x, - 1, it may be shown

1 1 1

that, in the equality-constrained case, the number of extreme points of S
can be made arbitrarily large if n >3, 1i.e., if the number of variables
is at least 3. This contrasts with the equality-constrained cases in
which n=1 and 2, where from the geometry of S it is clear that
maximum number of extreme points is 1 and 2 respectively. For related

complexity results in the inequality-constrained case see [3], [4], [5],[13).)

However, if the matrix A is rational, then the constraints of SI may be
converted into an equivalent set of equations in integer variables, so that
the results above may be applied to prove that conv SI is polyhedral in

the rational coefficient case.

] 8«
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